
Section ECOLOGY AND ENVIRONMENTAL STUDIES

139 

MODELING PRESENT AND PROSPECTIVE 

DISTRIBUTION OF PHYTEUMA GENUS IN CARPATHIAN 

REGION WITH MACHINE LEARNING TECHNIQUES 

USING OPEN CLIMATIC AND SOIL DATA 

Assoc. Prof. Dr. Alexander Mkrtchian 
Ivan Franko National University of Lviv, Ukraine 

ABSTRACT 
Species distribution modeling can be effectively carried out using open data 

and data analysis tools with machine learning techniques. Modeling of the 
distribution of Phyteuma genus in the Carpathian region has been carried out with 
data from the GBIF database, climatic data from the Worldclim database, and soil 
properties data from Soilgrids soil information system. Spatial distribution 
modeling was accomplished with machine learning techniques that have marked 
advantages over more traditional statistical methods, like the ability to fit complex 
nonlinear relationships common in ecology. 

Four methods have been examined: Maxent, Random Forest, Artificial Neural 
Networks (ANN), and Boosted Regression Trees. AUC and TSS criteria calculated 
for testing data with cross-validation have been applied for assessing the 
performance of the models and to tune their parameters. ANN with a reduced set of 
predictor variables (6 from initial 21) appeared to fare the best and was applied for 
predictive modeling. Prospective data based on future climate projections from 
Worldclim were input to the model to get the prospective distribution of the plant 
taxon considering expected climate changes under different RCPs. 

Keywords: species distribution modeling, machine learning, Carpathians, 
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INTRODUCTION 

Accurate knowledge of species distribution is an important prerequisite for 
effective conservation practices, e.g. regarding the designation of protected areas. 
It concerns endangered species, as well as keystone species playing a critical role 
in maintaining the ecosystem integrity and umbrella species which protection 
indirectly protects many other species and the ecological community in general. 

While counting and mapping species distribution in field is very laborious and 
cumbersome, species distribution modeling (SDM) becomes an indispensable tool, 
which application is facilitated nowadays by the availability of spatial data on 
factors determining species distribution, modern methods and techniques for data 
analysis, and processing capabilities of modern computers. Species distribution 
models estimate the relationship between species records at sites and the 
environmental and/or spatial characteristics of those sites [3]. There is a 
considerable amount of publications coming out recently devoted to the topic in 
general or some specific issues related to it (e.g. [3]). 
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Species distribution modeling can be effectively carried out using open data 
and open data analysis tools. It is especially of value for countries and projects with 
limiting research funding. Modern machine learning techniques are more suitable 
for the purpose comparing with more traditional statistical approaches due to the 
very nature of the problem: effects of predictive variables on target species 
distribution are usually non-linear, these variables are often highly interdependent 
and spatially autocorrelated, voids and errors in data are common, etc. Only quite 
recently did these techniques enter the mainstream of ecological modeling, mainly 
due to relatively high computational demands met only by relatively modern 
computers. 

SDM results are not only helpful in delineating the presumable actual locations 
of target species, but can also be used as predictions of future distributions of 
species habitats, when data on prospective distributions of predictive variables are 
available. As climatic conditions are expected to change significantly in the course 
of the present century due to human-induced emissions of greenhouse gases, 
habitats of most species are expected to shift accordingly, as many climatic 
characteristics have direct physiological impact on plants and animals. 

An objective of this study is to model the present and prospective distribution 
of Phyteuma (rampion) genus in the Carpathian region with open climatic and soil 
data, using a bunch of machine learning techniques. This genus, common for 
forested low- to middle altitude habitats in different parts of Carpathian region, 
could be regarded as umbrella taxon for the protection of most valuable Carpathian 
biological communities and ecosystems. The genus contains several species which 
were considered in aggregate due to insufficient number of records for single 
species and their similar ecological characteristics. 

MATERIAL AND METHODS 

Database maintained by the Global Biodiversity Information Facility (GBIF) 
was used as a data source for species observations [4]. Records were selected falling 
inside an arbitrary defined 600*800 km rectangle encompassing Carpathian 
mountain range as well as foothills and parts of neighbouring planes and hills (Fig. 
1). 
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Fig. 1. Study area and locations of Phyteuma records in GBIF database 

Data obtained from GBIF for the Carpathian region contained 148 records of 
Phyteuma genus in total. While the GBIF Secretariat claims to apply a set of semi-
automatic steps to remove duplicates and false positives, this is still an issue, as 
became obvious after inspecting the records and founding many ones sharing the 
same species name and location. After removing duplicates, 80 records have been 
kept. Most of SDM algorithms require some kind of absence or background data to 
contrast the presence data to. A double of observation records (160 points) were 
thus designated as background, with random coverage of geographic space inside 
study area. Six data points (3 from observed data and another 3 from simulated 
background data) have subsequently been removed due to omissions in predictors 
data. 

The choice of predictive variables for SDM was based on two considerations: 
1) their relevance as ecologically meaningful characteristics related to ecological 
factors driving the distribution of species, and 2) the availability of respective open 
data in the form of global spatial layers. 

The distribution of plant species is influenced by two types of ecological 
gradients: those related to climatic conditions (mainly to thermal and precipitation 
characteristics) and those related to properties of soils (nutrients availability, 
acidity, water retention capacity, aeration, etc.) Data on climatic conditions were 
derived from WorldClim database. It contains a set of global climate layers (grids) 
with a spatial resolution of about 1km2 [2]. Among others, there are layers of 19 
bioclimatic variables (coded as BIO1 to BIO19), which are derived from monthly 
temperature and precipitation with a consideration to have biological significance. 
While two of them (BIO3 and BIO7) are totally excessive being functions of some 
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other ones, 17 out of 19 bioclimatic variables were taken out as predictive variables 
for SDM. 

For data on soil conditions, SoilGrids digital maps of soil properties were used. 
These were produced for with state-of-
the-art machine learning methods, taking as inputs soil observations data from about 

 [5]. 
From 11 available physical and chemical soil properties, 4 were chosen as the most 
suitable predictors: soil acidity, organic carbon stock, cation exchange capacity, and 
total nitrogen. Among six standard depth intervals available, 15 30 cm depth 
interval was chosen as the most appropriate for the purpose. 

R free programming language and software environment for statistical 
computing and graphics provides for a number of packages with functions for 
spatial analysis and modeling, machine learning techniques, and specifically for 
SDM (e.g. sdm, dismo, etc.) A number of such functions were applied at different 
stages of data processing and analysis. The main analysis was carried out with 
SDMtune  a rather new R package that aims to facilitate training, tuning, and 
evaluation of species distribution models in a unified framework [6]. SDMtune 
package provides tools for tuning model hyperparameters with a novel genetic 
algorithm, and for data driven variable selection to avoid model overfitting. 

THEORY AND CALCULATION 

Initially, prepare SWD function creates an SWD object, given the coordinates, 
the species' name and the environmental variables. Train function then applies to 
the SWD object one of a set of commonly used modeling methods, including 
Maxent (ME), Random forest (RF), Artificial neuron networks (ANN), and Boosted 
regression trees (BRT), which are derived from appropriate packages. A set of 
parameters specific to the method used can be added as arguments to the predict 
function. When folds parameter is specified after creating random folds, SDMmodel 
object is output that hosts all the models trained during the cross-validation. It can 
be used to subsequently make tests of the models to assess and compare their 
performance. With nonparametric machine learning algorithms, cross-validation is 
often the only means to assess the accuracy and reliability of their predictions.  

Four commonly used SDM methods have been examined: Maxent (ME), 
Random forest (RF), Artificial neural networks (ANN), and Boosted regression 
trees (BRT), their performance being compared. A special R script has been written 
for the purpose that takes a SDM method and its hyperparameters as an input. First, 
presence/background data are randomly divided into 6 folds, one of which being 
designated as a validation data set. Model is then run with input method and its 
hyperparameters, and its performance metrics are calculated. The process is 
repeated 20 times (every time with different random folds and validation data sets), 
with the purpose of calculating metrics means and standard deviations. Metrics 
means thus calculated are more stable than metrics values obtained in any single 
run, while metric standard deviation characterizes the stability of metric estimates 
among the different runs.  
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The number of hyperparameters amenable to tuning varies from 2 for ME to 5 
for BRT. All of them except the size of hidden layer parameter for ANN method 
have got default values, though these are not always guaranteed to yield an optimal 
performance for the purpose. While some of the hyperparameters were chosen to 
be kept at default values, others were tuned with a view to achieve better 
performance, as indicated by appropriate metrics. Tuning models hyperparameters 
was performed with grid search method implemented in the function gridSearch. 
This function creates all possible combinations from an input range of possible 
values for hyperparameters and returns the values of the chosen evaluation metric 
for every possible combination so that the user can see the effect of varying the 
hyperparameters on the model performance and choose those values for 
hyperparameters that maximize the metric chosen. 

Metrics employed to evaluate model performance were 1) area under the 
receiver operating characteristic (ROC) curve (AUC), 2) the true skill statistic 
(TSS). AUC is regarded as a threshold independent measure that assesses the 
discriminatory power of the model in separating presences from absences. TSS is 
defined as the sum of sensitivity and specificity of the discriminating capacity 
minus one. It was introduced to the assessment of SDM results in [1], where it is 
recommended as a simple and intuitive measure for the performance of species 
distribution models. In comparison with more widely used kappa statistic TSS 
measure is insensitive to prevalence while still keeping all the advantages of the 
former. 

Initial models include 21 predictive variables (17 of which are related to 
climate and another 4  to soil properties), many of which are significantly 
correlated. It looks desirable to reduce this number without compromising model 
performance, as more parsimonious models are usually characterized by smaller 
variance of the parameter estimates and are less prone to overfitting. The 
importance of separate variables for the model performance can be assessed with 
varImp function from SDMtune package. This function randomly permutes one 
variable at a time (using training and absence/background datasets) and computes 
the decrease in training AUC. 
achieved with reduceVar function. It removes variables with an importance lower 
than a given threshold in a stepwise fashion, starting from the variable with the 
lowest importance; however variables are removed only if the model performance 
after this does not decrease compared to the initial model, according to a given 
evaluation metric. 

After a model with optimal hyperparameters values and a set of predictive 
variables has been built, it can be input to predict function to obtain the prediction 
maps of species occurrences. Model predictions can be regarded as the relative 
probabilities of species occurrence in the area. However, in conservation and 
environmental management practices the information presented as predicted 
species presence/absence may be more practical. To transform relative probabilities 
into presence/absence maps, complementary-log-log (cloglog) link function was 
applied to detect a value that maximizes the sum of sensitivity and specificity. This 
value is then applied as a threshold to relative probabilities maps. 



144 

When data on prospective distributions of predictive variables are available, 
future distributions of species habitats can also be forecasted based on models built 
on present-time data. Climate projections from 14 CMIP5 global climate models 
(GCMs) for three representative concentration pathways (RCPs) derived from 
WorldClim database were used as a data source for future climatic conditions, while 
soil conditions were supposed to be relatively stable, thus present-time values were 
directly used in forecasts. 

A special R script has been written that takes as input one of 3 RCPs and one 
of two prediction periods (2050 or 2070) for which data are available. For each of 
14 GCMs it downloads a raster stack of bioclimatic variables for the respective year 
and RCP, reprojects and crops it to the study area extent, drops unnecessary 
variables leaving only those present in the final model, renames layers, adds to them 
relevant soil properties layer(s), runs the model with these layers as an input, and 
adds the model prediction into a raster stack. When the predictions for all of the 14 
GCMs have been accumulated in a stack, the median value of the stack is calculated 
and output as a final prediction for the given RCP and year. Median was chosen 
instead of mean because it is less subject to possible outliers in some model 
predictions. 

Final predictions can be presented as relative occurrence probabilities maps or 
as predictive presence/absence maps after applying a threshold to the former. Based 
on these maps, prospective habitats areas can be calculated. 

RESULTS AND DISCUSSION 

Tuning of model hyperparameters with gridSearch was the first stage in model-
building process. For the ME model, default value 1 for the regularization multiplier 
appeared suboptimal, and 0.75 was used as the one producing better output. For the 
RF model, the optimal values of the number of trees lie in the range 200 1000, with 
the default value of 500 being close to optimal. The best results for ANN were 
achieved with 12 units in the hidden layer and weight decay = 6. As to BRT model, 
the default number of trees = 100 seems to be close to optimal, the shrinkage 
parameter gave best results in the range from 0.01 to default 0.1, while the bagging 
fraction default value 0.5 seemed suboptimal, with those in the range 0.6 1 
producing slightly better results. Thus, values chosen for the tuned model were 100 
for the number of trees, 0.05 for shrinkage, and 0.8 for bagging fraction. It was 
found in general that most models are not especially sensitive to moderate variations 
in hyperparameters values. The exception is ANN that produced nonsensical results 
with default value of weight decay = 0 while quite good results appear when 
increasing this parameters to 2 and above. 

The initial results of applying four mentioned SDM modeling methods using a 
full set of 21 predictive variables are shown on Table 1. Maxent method appears as 
inferior, while three other methods gave results of comparable accuracy, as seen in 
testing columns. Random forest method appeared to be prone to overfitting, as 
implied by 1 values of AUC and TSS metrics calculated for training dataset. It was 
impossible to statistically prove performance differences between ANN and BRT 
methods (their metrics means plus-minus their standard deviations overlap). ANN 
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still shows slightly better values for both of the performance metrics and slightly 
bigger differences in these values between testing and training columns, implying 
smaller variance (and smaller proclivity to overfitting). 

Table 1. Performance metrics of different SDM methods calculated on training 
dataset and with the aforementioned testing procedure. For testing case, standard 

deviations are given in parentheses. 

Method AUC 
(training) 

AUC(testing) TSS 
(training) 

TSS(testing) 

Maxent 
(ME) 

0.8162 0.796 
(0.0138) 

0.6114  0.5938 
(0.0252) 

Artificial neural networks 
(ANN) 

0.9437 0.9369 
(0.005) 

0.7508 0.7891 
(0.018) 

Random forest 
(RF) 

1 0.9321 
(0.0076) 

1 0.7851 
(0.0261) 

Boosted regression trees 
(BRT) 

0.964 0.9304 
(0.0062) 

0.8145 0.775 
(0.0162) 

Applying reduceVar function to ANN model allowed to significantly reduce 
the number of predictive variables without compromising model performance 
metrics, thus making a model more parsimonious. Picking predictive variables was 
based on inspection of reduceVar function graphic output: variables were chosen 
that either were retained up to the later stages of the pruning algorithm run or which 
withdrawal led to relatively high decrease in values of performance metrics. Six 
variables out of initial set of 21 were thus chosen out for the final model; five of 
them relate to climate and another one to soil characteristics, that is: Annual 
precipitation (BIO12); Precipitation of wettest quarter (BIO16); Temperature 
seasonality (BIO4); Precipitation of coldest quarter (BIO19); Precipitation 
seasonality (BIO15); Soil acidity (phh). 

Table 2 shows performance metrics of ANN model with these six predictive 
variables in comparison with a model with a full set of 21 variables. It can be seen 
that reducing the number of predictive variables to the six most important ones 
didn`t cause the decrease in performance metrics calculated with cross-validation 
on testing data. The direct result of applying predict function is a map of the relative 
probabilities of species occurrence in the area (Fig. 2, left). A threshold value 0.229 
was used to convert it to habitat presence/absence map that looks more customary 
for practitioners(Fig. 2, right). 

Table 2. Performance metrics of ANN SDM method calculated with a full and 
reduced sets of predictive variables. 

Model AUC 
(training) 

AUC(testing) TSS 
(training) 

TSS(testing) 

Full set of 
21 variables 

0.9437 0.9369 
(0.005) 

0.7508 0.7891 
(0.018) 

Reduced set 
of 6 
variables 

0.94 0.9381 
(0.0036) 

0.7384 0.7893 
(0.0132) 
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Fig. 2. Relative occurrence probabilities (left) and predicted habitat (right) of 
Phyteuma. 

Predictions of future Phyteuma genus habitat under three different RCPs for 
years 2050 and 2070 were made with the same model, to which modified values of 
climatic variables reflecting assumed future climatic conditions were input. Results 
for RCP 50 and year 2050 are shown on Fig. 3. Comparing to Fig. 2, there are some 
spatial shifts: e.g. habitat area is predicted to somewhat increase in Eastern 
Carpathians while a decrease is expected in Southern Carpathians. Table 3 shows 
the expected habitat area changes for 2050 and 2070 under different RCPs. It shows 
that while habitat area for Phyteuma genus is expected to be stable or somewhat 
increase under moderate climate changes scenarios (RCP 26 and 45), the 
considerable decrease is expected for the most severe scenario RCP 85. 

CONCLUSION 

SDMs represent a valuable cost-effective tool to identify current important 
areas for threatened species that require attention from conservationists, and to 
forecast ecosystem impacts of rapid human-induced environmental changes. 
Machine learning approaches are becoming increasingly popular, facilitated by the 
recent availability of high computational power, and due to their ability to fit 
complex nonlinear relationships without requiring an a priori definition of a data 
model. Another important advance is the increased availability of open data on 
species observations and ecological factors. In the given case RF, BRT and ANN 
methods achieved results of similar accuracy, and reducing the number of predictive 
variables from 21 to 6 seemed feasible. An important prerequisite to successive 
modeling is the choice of predictive variables that are ecologically meaningful for 
the target species; the combination of ecological knowledge and statistical skill is 
thus needed to obtain reliable results. 
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Fig. 2. Prospected occurrence probabilities (left) and habitat area (right) of 
Phyteuma for year 2050 based on RCP45 climate projections. 

 

Table 3. Predicted Phyteuma habitat area changes for years 2050 and 2070. 
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